PATTERNS AND TRENDS IN THE OUTCOMES AND HOSPITAL COSTS FOR SEPSIS IN THE ELDERLY

Olubode A Olufajo, MD, MPH, Namita Akolkar, MD, Jahniece Williams, Norma Smalls, MD

INTRODUCTION

Sepsis is responsible for a large proportion of hospital deaths

 Sepsis hospitalization in the very elderly has markedly increased over the years.

• Understanding trends in outcome and costs are important in clinical and administrative decisions.

However, sparse data exists among this population.

INTRODUCTION

 Aim: To measure the patterns of sepsis in the elderly and analyze trends in these patterns

Hypothesis:

- Overall, older age will be associated with worse mortality compared to younger patients.
- There will be a trend towards decreased mortality over time but with an increasing cost of care in the elderly

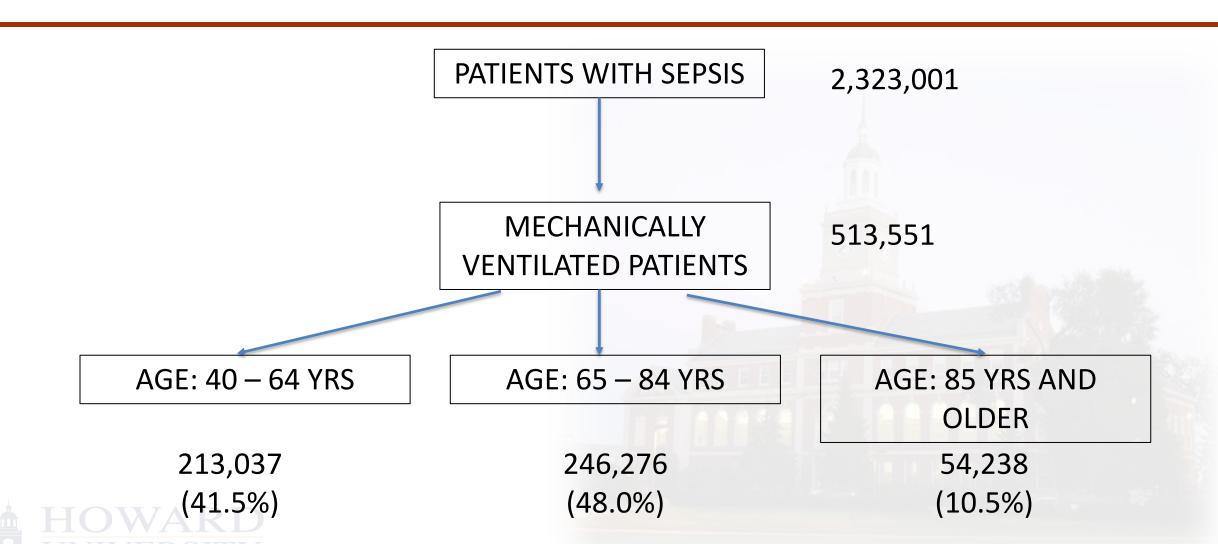
METHODS

Patients 40 years and older in National Inpatient Sample, 2005 – 2014

 As a marker of critical illness, patients with procedure codes for mechanical ventilation were identified.

• Age groups of 40 - 64, 65 - 84, and ≥ 85 were examined.

METHODS


 Demographics, co-morbidities and outcomes of the age groups were compared using descriptive analyses

Multivariate regression analyses identified independent outcome predictors

Trends in outcomes were assessed

RESULTS

DEMOGRAPHICS

	Age Category			
Characteristics	40-64	65-84	>85	P-value
Sex				
Male	117,559	129,984	23,983	< 0.001
	(55.18%)	(52.78%)	(44.22%)	
Female	95,470	116,275	30,248	
	(44.82%)	(47.22%)	(55.78%)	
Race/Ethnicity				
White	119,295	151,721	34,341	< 0.001
	(63.72%)	(69.32%)	(69.55%)	
Black	36,479	31,820	6,586	
	(19.48%)	(14.54%)	(13.34%)	
Hispanic	19,335	19,415	4,216	
	(10.33%)	(8.87%)	(8.54%)	
Other	12,125	15,902	4,232	
	(6.48%)	(7.27%)	(8.57%)	

CO-MORBIDITIES

	Age Category			
Characteristics	40-64	65-84	>85	P-value
Charlson Category				
0	45,691	36,750	9,975	< 0.001
	(21.45%)	(14.92%)	(18.39%)	
1	46,104	52,087	12,958	
	(21.64%)	(21.15%)	(23.89%)	
2 or greater	121,242	157,439	31,305	
	(56.91%)	(63.93%)	(57.72%)	
Comorbidities				
CAD	17,933	38,660	9,279	< 0.001
	(8.42%)	(15.70%)	(17.11%)	
HTN	86,956	125,808	29,089	< 0.001
	(40.82%)	(51.08%)	(53.63%)	
DM	57,960	73,318	12,501	< 0.001
	(27.21%)	(29.77%)	(23.05%)	
ARF	115,048	140,130	31,823	< 0.001
	(54.00%)	(56.90%)	(58.67%)	
CHF	47,882	87,869	23,065	< 0.001
	(22.48%)	(35.68%)	(42.53%)	

HOSPITAL LOCATION AND DISCHARGE STATUS

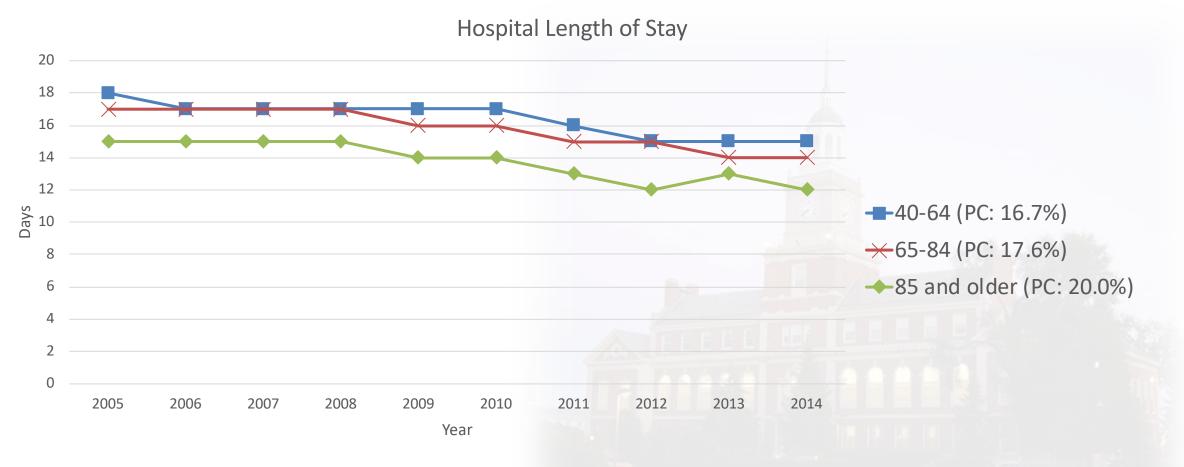
	Age Category			
Characteristics	40-64	65-84	>85	P-value
Hospital location				
Rural	13,432 (6.35%)	16,204 (6.61%)	3,010 (5.57%)	<0.001
Urban Non-Teaching	77,022 (36.42%)	102,546 (41.84%)	24,046 (44.47%)	
Urban Teaching	121,034 (57.23%)	126,332 (51.55%)	27,017 (49.96%)	
Hospital discharge status				
Home	30,278 (23.25%)	11,768 (8.99%)	1,215 (5.07%)	<0.001
Short term acute care facility	12,668 (9.73%)	11,078 (8.46%)	1,430 (5.96%)	
Home-health	20,825 (15.99%)	15,581 (11.90%)	2,398 (10.00%)	
SNF/ICF	65,171 (50.04%)	92,309 (70.49%)	18,913 (78.88%)	
AMA	1,295 (0.99%)	217 (0.17%)	20 (0.08%)	

OUTCOMES

Outcome	Age Category			
	40-64	65-84	>85	P value
Mortality	82,265 (38.64%)	114,584 (46.56%)	30,081 (55.48%)	<0.001
Hospital LOS* Days (IQR)	16 (10-27)	16 (10-25)	14 (8-21)	<0.001
Hospital Cost* \$ (IQR)	44,066.89 (25,428.26- 77,374.44)	40,324,92 (24,093.75- 67,899.99)	32,880.38 (20,367.77- 52,857.42)	<0.001

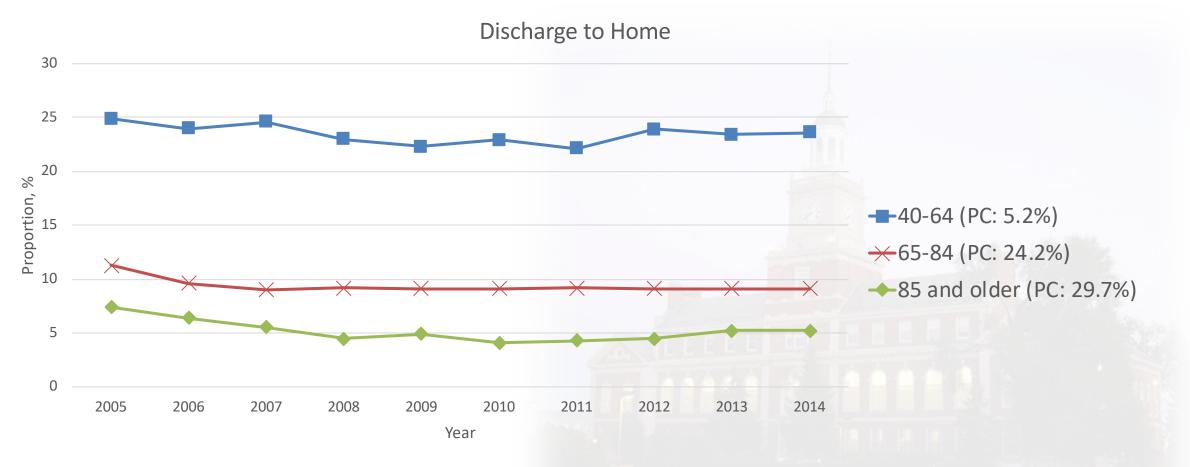
^{*}Analyses restricted to patients who survived IQR, Interquartile Range

MULTIVARIATE REGRESSION ANALYSIS


Characteristics	Mortality OR (95% CI)	LOS Mean difference (95% CI)	Hospital Charge Mean difference, \$ (95% CI)
Age			
40-64	Ref	Ref	Ref
65-84	1.46	0.38	-811.44
	(1.43 - 1.49)	(0.15 - 0.61)	(-1,503.97 – -118.90)
>85	2.20	-2.03	-11,267.10
	(2.13 - 2.26)	(-2.44 – -1.63)	(-12,265.3610,268.84)

TRENDS IN MORTALITY

TRENDS IN HOSPITAL LOS



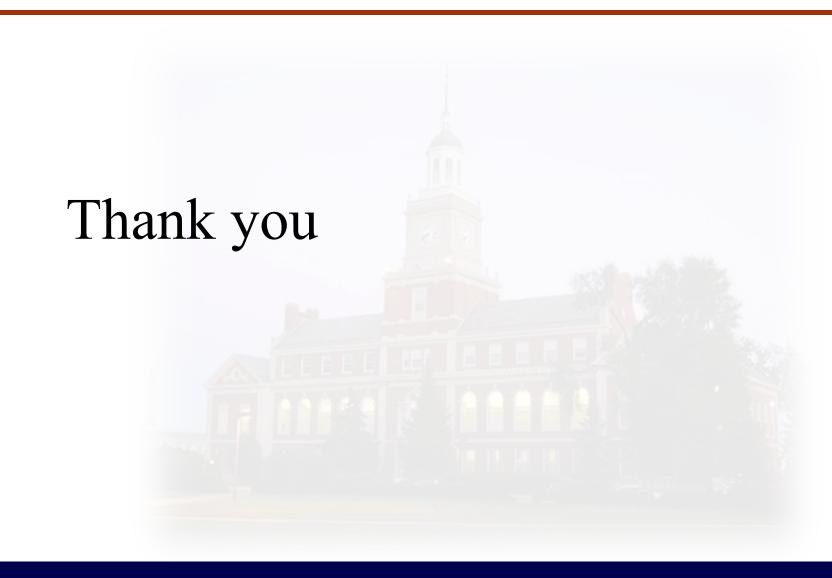
TRENDS IN COSTS

TRENDS IN DISCHARGE DISPOSITION

CONCLUSION

 Although mortality in the very elderly septic patient remains high.

 Mortality and LOS decreased during the study period with minimal change in cost


 The decrease in hospital LOS was not associated an increase discharge to sub-acute care facilities

CONCLUSION

 Continued improvements in care processes specific to the elderly may be beneficial in improving outcomes among older patients.

